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Supplementary Section 7S.8
Logic and Science

Philosophy of science became a specialized subfield of philosophy concomitant with 
the development of modern, formal logic. Especially in the early twentieth century, 
logic played an important role in attempting to work out the nature of explanation 
and the related notion of confirmation. In this section, we will look at the relation of 
logical deduction to these topics and how logic may help us to understand the notion 
of a law. We will also see how the notion of a contradiction plays a central role in con-
structing and revising our scientific theories.

SCIENTIFIC EXPLANATION AND THE D-N MODEL
Explanation often begins with why-questions. Why do you study logic? Why did the 
United States enter World War I? Why does Earth revolve around its axis? Answers 
to such questions are often called explanations. Such questions solicit descriptions 
of the world that, in some sense, explain the event in question. Science is, at least in 
part, a collection of explanations, organizations of our best descriptions of the world.

There are many competing theories of explanation, a topic of lively debate in the 
philosophy of science. Among the earliest developers of formal theories of scientific 
explanation was Carl Hempel. In a series of papers including the classic “Studies in 
the Logic of  Explanation,” written with Paul Oppenheim, Hempel developed what he 
calls the deductive-nomological, or D-N, model of scientific explanation.

‘Nomological’ means law-like. According to the D-N model, an explanation of an 
event or phenomenon is a logical inference that uses general laws and initial condi-
tions as premises and the phenomenon to be explained, the explanandum, as a con-
clusion. D-N explanations are deductive in that the explanandum is derived from the 
laws and initial conditions, as in the general form at 7S.8.1.

7S.8.1	 L1, L2, L3, . . . Ln	 The relevant laws . . . 
	 I1, I2, I3, . . . In	 . . . and the relevant initial conditions . . . 
	 ——————————	 . . . logically entail . . . 
	 E	 . . . the explanandum.
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Consider the explanation of why a batted baseball takes a particular route to left 
field. Among the general laws involved are those governing the transfer of momentum 
from the bat to the ball and the force of gravity holding between Earth and the ball. 
Among the particular conditions include the particular angle at which the bat hits the 
ball, the masses of the bat and ball, the wind speed, and the air pressure. Given the 
velocities and masses and angles of impact, one can infer the trajectory of the ball. 
Such an inference is, according to Hempel and other proponents of the D-N model, 
an explanation of the ball’s flight.

Or consider why a person drinks a glass of water. In this case, the initial conditions 
might include the drinker’s thirst and the presence of water and a cup. The general 
laws would include physical and psychological generalizations about behavior: if I am 
thirsty, and there is water available, I drink some; I am thirsty, and there is water avail-
able; so I drink.

Notice that different kinds of laws may be used in D-N explanations. In the batted-
ball case, the laws to which we appeal are fundamental physical laws of motion. In the 
water-drinking case, the laws to which we appeal are psychological generalizations. 
The D-N model can provide a variety of kinds of explanations.

In ordinary cases, the laws involved in D-N explanations of particular events are 
general. They are sometimes called covering laws, since they apply to a wide range of 
cases and subsume particular events under them. The laws say that every time cer-
tain circumstances are realized, certain specific phenomena will occur. If we want to 
know why this sea creature is a mammal, we can appeal to a general law that all whales 
are mammals and the specific fact that this sea creature is a whale.

Both the general laws and the specific conditions subsumed under the general laws 
are required for a D-N explanation. Without specific conditions, we are left without 
application of the laws in any particular case. Without general laws, we lack an expla-
nation of a particular event or phenomenon.

For example, we might try to infer that a baseball flew out to left field solely from the 
angle at which it was hit and the momentum of the pitched ball and swung bat. But 
the explanandum follows neither logically nor conceptually without the invocation of 
laws that govern or describe interactions of balls and bats.

Moreover, the mere presence of a deductive inference that yields an explanandum 
is insufficient to provide a D-N explanation. We could infer, logically, that the ball 
flew to left field from the premise that the ball was struck and flew to left field, as at 
7S.8.2.

7S.8.2	 The ball was struck and flew to left field.
	 Therefore, the ball flew to left field.

The inference at 7S.8.2 is perfectly deductively valid. It requires only the use of 
the propositional logical rule of simplification. Such an inference is not explanatory, 
though, but disappointingly circular, lacking the relevant general laws.

Such disappointing or vacuous explanations may be disguised by fancy language. 
Consider the mocking claim, found in Le Malade Imaginaire by the seventeenth- 



S c i e n t i f i c  E x p l a n a t i o n  a n d  t h e  D - N  M o de l     3

century French playwright Molière, that opium puts one to sleep because it has the 
dormitive virtue. Molière, in invoking this faux explanation, was showing how people 
sometimes pretend to explain by constructing obscure terms. Saying that opium puts 
one to sleep because it has the dormitive virtue is to say that it puts one to sleep be-
cause it puts one to sleep, another disappointingly empty explanation. A better expla-
nation of why opium puts one to sleep would appeal to general laws about how opium 
interacts chemically with our body. Such an explanation would fit the D-N model 
by offering general principles of chemistry and neurology and particular facts about 
opium and brains and bodies.

So the D-N model can be used to explain specific events or phenomena by using 
general laws. We can also use the D-N model to explain the so-called lower-level (or 
more-particular) laws by higher-level (or more-general) laws. For example, consider 
the three chemical laws at 7S.8.3.

7S.8.3	 Boyle’s law	 P1V1 = P2V2

	 Charles’s law	 V1/T1 = V2/T2

	 Ideal gas law	 PV = kT

Boyle’s law and Charles’s law are more lower level than the ideal gas law, more 
specific and more narrow. For Boyle’s law, we assume a constant temperature while 
varying pressure and volume. For Charles’s law, we assume a constant pressure and 
vary temperature and volume. The ideal gas law combines the results of the other 
two and applies more generally, in cases of varying temperature or varying pressure. 
And we can explain the lower-level laws in terms of the higher-level law, by holding 
either pressure or temperature constant and deriving the lower-level laws from the 
ideal gas law.

Hempel uses the example of how gravitational law explains Galileo’s law regarding 
free-falling bodies. Galileo took the acceleration of a free-falling body to be a con-
stant. Newton’s law of gravitation shows that Galileo’s law is false. Since the accel-
eration of a body due to its gravitational attraction to another body varies with the 
distance between the two bodies, as a falling object approaches Earth, its acceleration 
increases. But because of the size of Earth, Galileo’s formulation approximates the bet-
ter Newtonian formulation and can be used in many practical cases. The Newtonian law 
of gravitation can explain why Galileo’s formulation works near the surface of  Earth.

Thus, having a D-N explanation can be useful in explaining both particular phe-
nomena and particular laws.

Several problems arise for using the D-N model to produce the best explanations. 
For many purposes, we want to discover the highest-level, the most general, laws 
available. In particular explanations, though, we generally do not need a high-level 
covering law and can use a minimal covering law instead. Newton’s gravitational 
law, for example, applies to interactions among all massive bodies. But to explain 
the falling of, say, my keys on the floor, we do not need the broad laws of Newtonian 
gravitation or even the more correct, even higher level, relativistic formulations of 
gravitational theory. We can, instead, appeal to less-general laws that apply only to, 
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say, the gravitational pull of Earth on these keys rather than the attraction of any two 
objects. Such a minimal covering law would provide a D-N explanation. The laws 
would refer only to the attraction of particular keys and the planet Earth. The initial 
conditions would refer to the relevant keys. The explanandum could be logically in-
ferred. But the explanation may appear to be unsatisfying because the minimal cover-
ing is not general enough. Again, merely having a D-N form does not suffice to make 
an inference into a satisfying explanation.

A similar challenge for defenders of the D-N model of explanation concerns the 
direction of explanation. To take a classic example, consider a flagpole and its shadow, 
given the height of the sun. From the general laws of light, and the height of the flag-
pole, we can infer (and thus, explain) the length of the shadow. But we could equally 
well infer the height of the flagpole from the length of the shadow. While it seems 
reasonable to explain the shadow on the basis of the height of the pole, it seems odd to 
explain the height of the flagpole on the basis of the shadow. (We might explain our 
knowledge of the height of the flagpole by our knowledge of the length of its shadow, 
but that’s a separate case.) Some conditions on the direction of explanation are re-
quired for the D-N model.

Other problems for the D-N model of explanation concern determining what the 
laws are. So far in the section, we have mainly been thinking about some uncontro-
versial cases of laws, like Newtonian gravitation or the ideal gas law. But we also saw 
that other kinds of generalizations play the roles of laws in D-N explanations, as when 
we explain why someone drinks a glass of water. And not all generalizations are laws, 
even if they look like laws in being general claims.

Consider the explanation of why a particular student in my classroom is under sixty 
years old. We could appeal to the fact that the student is a person in my classroom. 
And we could invoke the generalization that everyone in the classroom is under sixty. 
We could then infer, logically, that the student is under sixty, as at 7S.8.4.

7S.8.4	 All persons in my classroom are under sixty.
	 Rey is a person in my classroom.
	 So Rey is under sixty.

7S.8.4 has the structure of a D-N explanation, and its first premise is a general claim 
that plays the role of the law in the explanation. But that general statement is not, in 
other ways, law-like. If a person over sixty came in to the room, for example, the pur-
ported law would no longer hold. In the baseball case, whether the bat hits the ball or 
not, the laws of transfer of momentum remain. In the classroom case, the general state-
ment about the ages of people in the room holds only when particular people are in the 
room. One way to put this difference is that real laws support counterfactual instances.

The problem of determining which statements are laws and which are not is deep 
and difficult. One difference is that laws remain true no matter what particular events 
take place. But it is difficult to determine the truth of counterfactual claims just be-
cause they are counterfactual. Moreover, a solution to the problem seems essential to 
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understanding D-N explanations because of the roles played by laws in such explana-
tions. But philosophers not only disagree about how to determine the laws, they do 
not all agree about what a law is. Some philosophers think of laws as fundamental 
aspects of the world that govern, in some sense, events and interactions. Others think 
of the laws as mere summaries of interactions, having no reality of their own. 

Though we will not pursue a solution to these problems here, two points are worth 
making. First, the problem of determining the laws (if there are any) is closely related 
to the problem of induction discussed in section 7.1 of IFLPA. Second, and relat-
edly, there is no syntactic test for whether a statement is a law, no way of determining 
whether a general statement is a law from just the structure of the statement. Com-
pare 7S.8.5 and 7S.8.6.

7S.8.5	 All gold spheres are less than one mile in diameter.
7S.8.6	 All uranium spheres are less than one mile in diameter.

7S.8.5 and 7S.8.6 are grammatically, syntactically, identical. Yet 7S.8.5 is not a law 
and 7S.8.6 is a law. We could, if we had certain peculiar political or alchemical abili-
ties, gather together a mile-diameter ball of gold. Such a ball of uranium would exceed 
its critical mass and explode. The difference is due to the nature of the world, not the 
nature of the language or logic.

Even if we had a good way to pick out the general laws like 7S.8.6 and to distin-
guish them from accidental generalizations like 7S.8.5 and the first premise of 7S.8.4, 
there remains a problem of specifying what an instance is, which particular events or 
objects a law applies to. Consider ‘all ravens are black’. It is natural to think that it ap-
plies to all and only ravens. But, given the logical structure of D-N explanations, the 
domain of objects to which such a law applies might be much broader, as we will see 
in our next two subsections.

There are many theories of explanation other than the D-N model. Many of them 
are refinements of the D-N account, emphasizing the causal nature of laws, for ex-
ample. Insisting that an explanation must focus on a cause may help with the flagpole 
example: the pole causes the shadow, but the shadow does not cause the pole.

Other important refinements take into account the probabilities involved in many 
explanations. When we explain an instance of lung cancer, for example, by the fact 
that someone smoked cigarettes habitually, we appeal to general, but not categorical, 
laws, about the relationship between smoking and lung cancer. Many laws appear to 
be probabilistic, as do the fundamental laws of quantum mechanics.

Some philosophers of science appeal to unification as an essential aspect of expla-
nation: a good explanation unifies disparate phenomena. Other philosophers take 
explanation to be a pragmatic or epistemic notion; rather than explaining particu-
lar claims by appeals to general claims, we explain what we don’t know in terms of 
what we do know, explaining the unfamiliar by appeal to the familiar. Such models 
of explanation invoke the inferential tools of logic less apparently than the core D-N 
model, though the extent of their reliance on inference varies.
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LAWS AND INDUCTION
We saw in the above discussion of explanation that the difference between laws and 
law-like generalizations is difficult to discern. This problem of determining the laws 
is important in most accounts of explanation, and in the philosophy of science more 
generally. One aspect of the problem is determining when an event confirms a general 
claim. Our studies of formal logic are useful in understanding the nature of confirma-
tion and some problems that arise in refining that notion.

Confirmation, on some accounts, is the converse of explanation, and so raises some 
similar problems. Where a law and initial conditions might explain an event or phe-
nomena, a particular event can confirm or disconfirm a hypothesis, one that may even 
turn out to be a law. Like explanation, the problem of confirmation involves specify-
ing the connection between a general claim and a particular statement, often between 
a theory and an observation.

In science, we generally want to summarize myriad diverse experiences, reducing 
them (in some sense) to a small set of general principles. For example, we might see 
an apple fall to the ground. Then another, and another. We can summarize all these 
individual events, as at 7S.8.7.

7S.8.7	 All apples fall to the ground.

7S.8.7 is partly general, in that it applies to all apples, and partly limited, in that it 
applies only to apples. We might then notice that pears and peaches and oranges also 
fall to the ground, and develop the more general 7S.8.8.

7S.8.8	 All fruit falls to the ground.

7S.8.8 represents an increase in the generality of 7S.8.7, but is still limited to fruit. 
We might further notice that vegetables and rocks and people also fall to the ground. 
We could propose 7S.8.9.

7S.8.9	 All objects fall to the ground.

7S.8.9 is satisfyingly more general than 7S.8.7 and 7S.8.8. It looks a lot like some-
thing we would be happy to call a law of nature.

Unfortunately, as it stands, 7S.8.9 is false, entailing precipitously that smoke and 
steam and helium balloons are not objects. We thus have to refine 7S.8.9, replacing a 
rough concept like ‘falling to the ground’ with concepts like density, force, and grav-
ity. Newton’s work on gravity unified accounts of terrestrial and celestial motions, 
making the laws of motion much more general, since they apply to any two objects, 
whether on Earth or in the sky, and yields the general law of what is now called New-
tonian gravitational theory at 7S.8.10.

7S.8.10	 F = Gm1m2/r2

7S.8.10 applies to any two objects. (Well, not mathematical objects, or other ab-
stract objects like propositions, but let’s not worry about those here.) Still, 7S.8.10 
continues to be limited, or anyway an incomplete description of the motion of objects. 
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To describe fully the motion of a particular object, we have to introduce other forces, 
ones that act at the same time as gravitational force, like electromagnetic force.

The point here is that we want scientific theories to be general, summary claims, 
applying to as many specific cases as possible. The process by which we organize a 
limited number of experiences into a general claim is called induction. The problem 
of induction is that the leap from the specific to the universal, even in 7S.8.7, involves 
appeal to claims about causal connections of which we have no experiences. That is, 
if we want statements like 7S.8.7–7S.8.10 to apply to future and unseen fruit (and 
other objects), then we need to presume something like a law of the uniformity of na-
ture, some claim that the future and unobserved will be like the present and observed. 
From our experiences, we can conclude only claims like 7S.8.7′ or 7S.8.10′.

7S.8.7′	 All observed apples have fallen to the ground.
7S.8.10′	 F = Gm1m2/r2, as far as we have observed.

The predictive force of 7S.8.7 and 7S.8.10 is lost in 7S.8.7′ and 7S.8.10′. Without 
presuming that our experiences of the past will continue into the future, we fail to 
meet a central demand of science.

One solution to this problem, from the eighteenth century Scottish philosopher 
David Hume, is to give up any claims about uniformity in nature, and to explain our 
claims 7S.8.7–7S.8.10 in terms of our expectations. We are built in such a way that we 
form mental habits, when seeing falling fruit and such, to develop expectations that 
the future will be like the past. We see apples untethered, and our past experience 
leads us to believe that the next untethered apples we see will fall, rather than rise 
or hover. We need not claim insight into the inner workings of nature (of apples or 
causation) to make this conclusion. We need merely observe that this is the way that 
our minds work.

One problem with Hume’s solution is that it is not always easy to figure out what to 
expect. We do not always know which claims are confirmed by an experience, and so 
do not know how to predict novel cases.

Recall the case at 7S.8.4, and imagine that a new student, age twenty, comes into the 
classroom. This does not increase our confidence in (or serve to confirm) the claim 
that all persons in the room are under sixty, taken as a predictive law about the class-
room. We know that the aged dean, or a visiting parent, or an older professor could 
just as easily enter the classroom. That a person in a room is under sixty will confirm 
the hypothesis that all persons in a room are under sixty. But it will not increase our 
confidence that future people in the room will be under sixty.

Contrast this situation with one in which we discover that a piece of copper con-
ducts electricity. In this case, we are led to believe that the next piece of copper we 
encounter will conduct electricity. In both cases, we are presented with regularities. 
Only in some cases are we led (by habit or whatever means) to expect that this regu-
larity will continue to apply, that we have, in summarizing the observed facts, discov-
ered a law that will allow us to predict future events.
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The difference between the copper case and the under-sixty case is that one is law-
like and the other is not. But to say that one is law-like and the other is not is merely to 
restate the problem, not to solve it. The question remains how to characterize the dif-
ference between law-like and non-law-like generalities. And this is essentially, at least 
in part, the problem of determining when an experience confirms a general claim and 
when it does not.

CONFIRMATION
Let’s think more about the relationship between theories and the evidence for them. 
To start, let’s return to the classic example of a law-like statement we saw earlier, “All 
ravens are black.” While most of what we think of as scientific laws or theories are 
more complicated than this simple claim, it is, like many laws, a generalization, plau-
sibly formulated on the basis of induction on observations, and one that projects into 
the future: not only are the ravens I have seen black, I also expect that the ravens I 
encounter in the future will be black. Similarly, all objects I encounter in the future 
will have the gravitational attraction between them that laws of gravitation ascribe, all 
charged particles will have the electromagnetic forces between them that Coulomb’s 
law describes, all neurological processes will have the characteristics that neurosci-
ence describes, and so on.

When general claims such as these are first developed, they are considered hy-
potheses, ones that we do not know whether to believe. Questions about whether 
to believe a hypothesis are questions about confirmation: What evidence increases 
my belief in the hypothesis? How much more credence should I give to a hypothesis, 
given some particular event or observation? When, if ever, do we take a hypothesis as 
fully confirmed?

To take a simple case, and again following Hempel’s seminal work, this time on 
confirmation, when we consider a hypothesis of the form ‘all Ps are Qs’, we can iden-
tify both evidence that confirms the hypothesis and evidence that refutes it. A P that 
is not a Q—for example, a red raven—decisively refutes the hypothesis. A P that is a 
Q—a black raven—confirms the hypothesis.

This simple, perhaps obvious, point, which we saw in section 6.2 of IFLPA,  is known 
as Nicod’s criterion, after the early twentieth-century logician and philosopher Jean 
Nicod. Nicod’s criterion raises at least two kinds of questions. First, how much should 
our belief in a hypothesis be increased on the evidence of a P that is a Q? Returning 
again to the case at 7S.8.4, a twenty-year-old student entering my classroom will, ac-
cording to Nicod’s criterion, confirm the claim that all people in the room are under 
sixty, but not so much as to make us think that the hypothesis is law-like. In contrast, 
a single piece of copper conducting electricity will lead us to believe that any future 
piece of copper will conduct electricity.

Whether and to what degree an observation will confirm a hypothesis is thus a 
complex matter worth detailed consideration. Sometimes a single case suffices; other 



C o n f i r m a t i o n     9

times, no number of examples will. Formal logic has a significant role in many theories 
of confirmation. In particular, some views of confirmation take the relation between 
evidence and a theory to be deductive, just like the relation between explanations 
and phenomena. On the hypothetico-deductive view of confirmation, a hypothesis is 
confirmed by some observation or claim if the hypothesis formally entails that claim, 
given some auxiliary claims, including a logical theory. The complications arise when 
one tries to spell out the auxiliary claims needed beyond the logic.

The second kind of question raised by Nicod’s criterion concerns the relation be-
tween claims that all Ps are Qs and our observation of things that are not Ps, the rela-
tion, that is, between ‘all ravens are black’ and white swans or blue bonnets. Naturally, 
we would like to say that something that is not a P has no relevance to the claim that 
all Ps are Qs. Blue bonnets are irrelevant to our belief that all ravens are black. But 
it is also natural to think that anything that confirms a statement will confirm any 
statement logically equivalent to it. Logically equivalent statements, after all, have 
the same truth conditions, so should be true or false on the same evidence. This latter 
claim is sometimes called Hempel’s equivalence condition.

Unfortunately, all of these natural beliefs lead us to the paradox of the ravens, so 
called after the classic example we are considering. 7S.8.11 and 7S.8.12 are logically 
equivalent, by the rule of contraposition.

7S.8.11	 (∀x)(Px ⊃ Qx)
7S.8.12	 (∀x)(∼Qx ⊃ ∼Px)

Taking ‘Px’ as ‘x is a raven’ and ‘Qx’ as ‘x is black’, we are led to think that a black 
raven confirms 7S.8.11, a non-black raven refutes the claim, and anything that is not a 
raven has no relevance to the claim.

But on the same interpretation of the predicates, 7S.8.12 says that all non-black things 
are not ravens. On Nicod’s criterion, 7S.8.12 is confirmed by anything that is non-black 
non-raven, like a white swan or a blue bonnet. Moreover, anything that is black (that is, 
anything that is not non-black, like a raven) is irrelevant to the claim!

There are many options to avoid the paradox. One could drop Hempel’s equivalence 
condition that observations that confirm a claim also confirm all logically equivalent 
claims. The consequences for a logic of scientific theory are potentially devastating, 
though alternative logics are possible.

Alternatively, one could bite the bullet and say that non-Q non-Ps actually do con-
firm the claim that all Ps are Qs, though perhaps not as much as a P that is Q. One 
might claim that an observation of a white swan confirms that all ravens are black, 
but only in proportion to the relevant populations. There are many more non-black 
things than ravens, so the observation of a non-black thing that is not a raven is not 
as influential on our beliefs about 7S.8.12 (or about 7S.8.11) as the observation of a 
raven that is black.

Hempel favored a solution like the latter, noting, with Nelson Goodman, that con-
firmation takes place within a background of information and beliefs. Understanding 
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the context of a hypothesis, and evidence for or against it, is essential to the develop-
ment of scientific theory, which is not merely a formal logical matter.

Nevertheless, not only logic, but probability theory has come to be essential to our 
understanding the nature of confirmation. On what is known as a Bayesian view, after 
the eighteenth-century statistician Thomas Bayes, evidence confirms a hypothesis, to 
some degree, if it raises the probability of the hypothesis. Working out what it means 
to increase the probability of a hypothesis has turned out to be difficult, and has led to 
fecund work on probability, beliefs, and science.

RESOLVING CONTRADICTIONS
We have looked at two aspects of scientific methodology that may be illuminated 
by our studies of formal logic: explanation and confirmation. Let’s look at one more 
aspect of scientific method with a connection to logic. This one is less philosophi-
cally interesting (by which I mean that it is somewhat less contentious), but it is more 
closely connected to our work in logic.

We have lots of beliefs. Some of them are explicit, and can be recalled or affirmed 
at will, as my belief that Abraham Lincoln was the sixteenth president of the United 
States of America. Others are less easy to state or recall, like my beliefs about math-
ematics or how to ride a bicycle. The former are difficult to state in part because there 
are so many of them. The latter seem difficult to state because they are largely implicit.

We manage our beliefs constantly, updating them as we receive new evidence and 
giving up or restricting beliefs in general claims as contravening evidence appears. 
The process of managing our belief system is often, perhaps always, guided by prin-
ciples about what makes a good set of beliefs. What are the claims I should believe, 
given the evidence available to me? That guiding question should make it clear that 
epistemology, the study of knowledge and beliefs, is a normative field, not purely a de-
scriptive one: my belief set is formed both by facts about what I believe and principles 
about what I should believe.

Principles about what I should believe are not really separable from principles of 
scientific theory construction. Scientific methods are not isolated to lab work in sci-
ence departments. They are methods of maintaining a healthy set of beliefs. We are all 
scientists, in our everyday life, and our methods for evaluating our beliefs, if they are 
to be the best methods, do not differ from the scientific method. In both domains, we 
are guided by some basic principles about the relation of evidence to theories, by our 
understanding of how the world works, and by a desire to avoid inconsistency.

Formal logic regiments the principle of avoiding inconsistency in a couple of ways. 
For one, our classical systems of logic are explosive, as we saw in section 3.5: if a 
theory contains a contradiction, then every formula is provable. Since we want our 
theories to be sound, we have to make sure that our logic does not contain contra-
dictions. That’s the principle underlying our method of indirect proof, or reductio ad 
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absurdum argumentation: if a formula leads to a contradiction, it must not be true and 
thus should not be provable.

One of the most important methodological lessons we take from science concerns 
how to manage a belief that contradicts ones we already hold. Given our fallibility and 
that our beliefs are not all explicitly available, we ordinarily hold some contradictory 
beliefs. But sometimes these contradictions are made explicit and once we find that 
there is a conflict in our set of beliefs, we are responsible for looking at our evidence 
and ridding ourselves of the problem.

Ideally, when finding a contradiction among our beliefs, we are faced with a sys-
tem of hypotheses, each of which is independently justified, but which together are 
incompatible. We have to choose which hypothesis to cede. A contradiction within 
a large theory merely tells us that there is a problem in the theory. It need not tell us 
where the problem lies. So we look at the various evidence.

For example, imagine that we believe that there are going to be no parties this week-
end, but then we receive a flyer for a gathering on Friday. Adding the belief we gain 
from the flyer to our belief set leads to a contradiction. We could resolve that contra-
diction in various ways, some (but not all) of which are listed at 7S.8.13–7S.8.15.

7S.8.13	 We could check the date on the flyer; maybe there is a confusion 
about the date.

7S.8.14	 We could give up our belief about there being no parties this 
weekend.

7S.8.15	 We could redefine the term ‘party’ such that the gathering is not a 
party.

More technically, if we have a theory that yields a claim that is inconsistent with 
new evidence, we only know that assimilating the new claim with the original theory 
yields some kind of contradiction. A theory is a set of sentences. Let’s imagine a the-
ory T, equivalent to the set of sentences at 7S.8.16.

7S.8.16	 S1 ∙ S2 ∙ S3 ∙ . . . ∙ Sn

Let’s further imagine that T yields some claim O, but that we get new information 
that contradicts that claim, ∼O. By modus tollens, T is false. But T is just the conjunc-
tion at 7S.8.16. We are left with the negation of a series of conjuncts at 7S.8.17.

7S.8.17	 ∼(S1 ∙ S2 ∙ S3 ∙ . . . ∙ Sn)

7S.8.17 is, by an extended version of De Morgan’s law, logically equivalent to the 
series of disjuncts at 7S.8.18.

7S.8.18	 ∼S1 ∨ ∼S2 ∨ ∼S3 ∨ . . . ∨ ∼Sn

That’s as far as the logic will take us. As a logical matter, we don’t know which of the 
sentences of the theory to reject in order to restore consistency to our believe set. In 
indirect proofs, we make one explicit assumption and always abandon that one when 
we reach a conclusion. Reasoning in the real world is messier.
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Given that we have various options, we need methods for weighing the evidence, for 
choosing among those options. Those methods are governed by various abstract prin-
ciples. We look for underlying beliefs that might be at fault, perhaps bringing some 
implicit beliefs to our awareness, or reconsidering evidence for them. We can easily 
restore consistency to a theory that contains a contradiction in different, incompat-
ible ways, so we work carefully to make sure that we pick the best option available.

Scientific theories, like our belief systems, are generally underdetermined by evi-
dence. Given the same experiences, I could have different beliefs. Simple examples 
include the fact that evidence often provides correlation without indicating causa-
tion. For example, a recent study shows that Facebook users get lower grades in col-
lege. We do not know whether to conclude that Facebook use causes lower grades or 
that people who use Facebook are those who are already likely to be less successful. 
Similarly simple examples are ubiquitous.

More profoundly, we have choices among theories for holistic reasons. When pre-
sented with a theory and an observation, there are various options of how to integrate 
the observation into the theory. Even when an observation does not conflict with 
other, previously accepted hypotheses, there are always lots of theories that can ac-
cord with our claims. Some of those theories have extraneous elements. We discount 
theories that refer to ghosts, for example, and seek an explanation of the noise in the 
attic that appeals only to natural phenomena, like wind and expansion or contraction 
of materials due to humidity. We invoke principles of parsimony, or Ockham’s razor: 
do not multiply entities beyond necessity.

There are various virtues that guide our analyses of hypotheses, that help us to de-
termine how best to restore consistency to our theory, or belief set, and that govern 
scientific reasoning generally. Among them are properties including modesty, sim-
plicity, and generality. We accept only the weakest, or most modest, principles as 
the most plausible. We generally view the simplest explanations of phenomena as the 
most likely, though simplicity is not a categorical criterion: there are different ways for 
theories or claims to be simple, and they are sometimes in tension with one another. 
The claim that objects fall to Earth is simple, but it conflicts with gravitational theory, 
which is better because it is more general.

Science is the epitome of a rational enterprise, especially when we consider science 
in its broadest form. Our methodological principles are not merely for scientists in lab 
coats. They are guiding principles for managing our beliefs, including for philosophi-
cal theorizing. All reasoning is governed by the same kinds of principles and the same 
scientific methods, variously instantiated and applied.

TELL ME MORE 

•	What is Nicod’s criterion, and how is it important for conditionals? See 6.2: 
Conditionals.

•	What is the problem of induction? How does it undermine attempts to identify laws? See 
7.1: Deduction and Induction.
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For Further Research and Writing
1.	 What is scientific method? How does it relate to our ordinary reasoning? What 

is the role of formal logic in managing our beliefs and our scientific hypotheses? 
The readings from Quine and Ullian and from Papineau will be useful.

2.	 What is the role of logical entailment in an explanation? Describe the deductive-
nomological model of explanation and at least one objection to it. Hempel’s 
Philosophy of Natural Science will be especially helpful here.

3.	 What are the alternatives to the deductive-nomological model of explanation? 
Compare and contrast at least one other approach. You might find the Toulmin, 
Kitcher, Friedman, or Van Fraassen readings useful, in addition to Hempel’s work.

4.	 What is the relation between causation and explanation? Do the logical entail-
ments of the D-N model capture the causal relations? See especially Salmon’s 
work.

5.	 What is a probabilistic explanation? Can the deductive-nomological model of 
explanation be adapted to provide one? See Hempel’s Philosophy of Natural Sci-
ence and Railton’s article.

6.	 What does it mean to confirm a claim or a theory? Is the best notion of confir-
mation a logical relation? See Huber for a good overview and Hempel’s paper 
on confirmation for the formal-logical approach.

7.	 How do considerations of the problems of induction (see section 7.1) affect 
questions about explanation or confirmation? In addition to Hume and Good-
man, you might find the Huber and Papineau pieces useful.

8.	 What is the paradox of the ravens? What is the role of formal logic in formulat-
ing the problem? How might it best be addressed? See Papineau’s introduction, 
Hempel’s papers on confirmation, and Goodman’s few interesting comments 
in “The New Riddle of Induction” in Fact, Fiction, and Forecast.

Suggested Readings
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N. Zalta, Fall 2015. http://plato.stanford.edu/entries/hempel/. An excellent overview of 
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emphasize understanding, seeking an account in terms of unification.

Goodman, Nelson. Fact, Fiction, and Forecast. Cambridge, MA: Harvard University Press, 
1955. Goodman’s articles here on counterfactual conditionals and the new riddle of induc-
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Hempel, Carl Gustav. Aspects of Scientific Explanation and Other Essays in the Philosophy of 
Science. New York: Free Press, 1965. This collection contains Hempel’s papers on expla-
nation and confirmation, and other important essays.
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A Guide Through the Subject, ed. A. C. Grayling, 123–180. Oxford: Oxford University 
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